For who still thought there are left and right brain people… (research)

This new research published in PLOSOne debunks (again) a very, very popular neuromyth: left- and right brain thinking. You probably will have heard something like this: Logical, detail-oriented and analytical? That’s left-brained behavior. Creative, thoughtful and subjective? Your brain’s right side functions stronger. Well, we already new it was bogus and made some jokes about it but this new research still is important.

So, what’s the news?

From the press release:

Following a two-year study, University of Utah researchers have debunked that myth through identifying specific networks in the left and right brain that process lateralized functions. Lateralization of brain function means that there are certain mental processes that are mainly specialized to one of the brain’s left or right hemispheres. During the course of the study, researchers analyzed resting brain scans of 1,011 people between the ages of seven and 29. In each person, they studied functional lateralization of the brain measured for thousands of brain regions — finding no relationship that individuals preferentially use their left -brain network or right- brain network more often.

“It’s absolutely true that some brain functions occur in one or the other side of the brain. Language tends to be on the left, attention more on the right. But people don’t tend to have a stronger left- or right-sided brain network. It seems to be determined more connection by connection, ” said Jeff Anderson, M.D., Ph.D., lead author of the study.

Researchers obtained brain scans for the population they studied from a database called INDI, the International Neuroimaging Data-Sharing Initiative. The participants’ scans were taken during a functional connectivity MRI analysis, meaning a participant laid in a scanner for 5 to 10 minutes while their resting brain activity was analyzed.

By viewing brain activity, scientists can correlate brain activity in one region of the brain compared to another. In the study, researchers broke up the brain into 7,000 regions and examined which regions of the brain were more lateralized. They looked for connections — or all of the possible combinations of brain regions — and added up the number of connections for each brain region that was left- lateralized or right-lateralized. They discovered patterns in brain imaging for why a brain connection might be strongly left- or right-lateralized, said Jared Nielsen, a graduate student in neuroscience who carried out the study as part of his coursework.

“If you have a connection that is strongly left- lateralized, it relates to other strongly lateralized connection only if both sets of connections have a brain region in common,” said Nielsen.

Results of the study are groundbreaking, as they may change the way people think about the old right-brain versus left-brain theory, he said.

“Everyone should understand the personality types associated with the terminology ‘left-brained’ and ‘right-brained’ and how they relate to him or her personally; however, we just don’t see patterns where the whole left-brain network is more connected or the whole right-brain network is more connected in some people. It may be that personality types have nothing to do with one hemisphere being more active, stronger, or more connected,” said Nielsen.

Abstract of the research that can be read here:

Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.

9 thoughts on “For who still thought there are left and right brain people… (research)

  1. Please note that the studies were done on “resting brains”. We don’t go around with a resting brain as we function and think. I’d love to see a study done on interacting brains. Might be a totally different result.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.