Maybe it’s possible to change the amount of information the brain can store…

When I read the article, I immediately became scared someone will make it into a tv-commercial, but still it’s an interesting find. New research has identified a molecule that puts a brake on brain processing and when removed, brain function and memory recall is improved. More important, the study has implications for neurodevelopmental and neurodegenerative diseases, such as autism spectral disorders and Alzheimer’s disease. Still one need do know, remembering more can also be a burden.

From the press release:

“Previous research has shown that production of new molecules is necessary for storing memories in the brain; if you block the production of these molecules, new memory formation does not take place,” says RI-MUHC neuroscientist, Dr. Keith Murai, the study’s senior author and Associate Professor in the Department of Neurology and Neurosurgery at McGill University. “Our findings show that the brain has a key protein that limits the production of molecules necessary for memory formation. When this brake-protein is suppressed, the brain is able to store more information.”

FXR1P: a controller of certain forms of memory

Dr. Murai and his colleagues used a mouse model to study how changes in brain cell connections produce new memories. They demonstrated that a protein, FXR1P (Fragile X Related Protein 1), was responsible for suppressing the production of molecules required for building new memories. When FXR1P was selectively removed from certain parts of the brain, these new molecules were produced that strengthened connections between brain cells and this correlated with improved memory and recall in the mice.

Disease link

“The role of FXR1P was a surprising result,” says Dr. Murai. “Previous to our work, no-one had identified a role for this regulator in the brain. Our findings have provided fundamental knowledge about how the brain processes information. We’ve identified a new pathway that directly regulates how information is handled and this could have relevance for understanding and treating brain diseases.”

“Future research in this area could be very interesting,” he adds. “If we can identify compounds that control the braking potential of FXR1P, we may be able to alter the amount of brain activity or plasticity. For example, in autism, one may want to decrease certain brain activity and in Alzheimer’s disease, we may want to enhance the activity. By manipulating FXR1P, we may eventually be able to adjust memory formation and retrieval, thus improving the quality of life of people suffering from brain diseases.”

Abstract from the study:

Translational control of mRNAs allows for rapid and selective changes in synaptic protein expression that are required for long-lasting plasticity and memory formation in the brain. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein that controls mRNA translation in nonneuronal cells and colocalizes with translational machinery in neurons. However, its neuronal mRNA targets and role in the brain are unknown. Here, we demonstrate that removal of FXR1P from the forebrain of postnatal mice selectively enhances long-term storage of spatial memories, hippocampal late-phase long-term potentiation (L-LTP), and de novo GluA2 synthesis. Furthermore, FXR1P binds specifically to the 5′ UTR of GluA2 mRNA to repress translation and limit the amount of GluA2 that is incorporated at potentiated synapses. This study uncovers a mechanism for regulating long-lasting synaptic plasticity and spatial memory formation and reveals an unexpected divergent role of FXR1P among Fragile X proteins in brain plasticity.


1 Comment

Filed under Research

One response to “Maybe it’s possible to change the amount of information the brain can store…

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s