How come young children seem to run around all day without getting tired? They are athletes!

Our children are getting a little bit older than the children in this study, but I do recognize the phenomenon. Just try to follow what a young kid does for a couple of hours and you will understand it’s literally breath taking.

But now researchers have discovered how young children seem to run around all day without getting tired: their muscles resist fatigue and recover in the same way as elite endurance athletes. Even better: children also recover very quickly from high-intensity exercise — even faster than well-trained adult endurance athletes

From the press release:

“During many physical tasks, children might tire earlier than adults because they have limited cardiovascular capability, tend to adopt less-efficient movement patterns and need to take more steps to move a given distance. Our research shows children have overcome some of these limitations through the development of fatigue-resistant muscles and the ability to recover very quickly from high-intensity exercise,” say Sébastien Ratel, Associate Professor in Exercise Physiology who completed this study at the Université Clermont Auvergne, France, and co-author Anthony Blazevich, Professor in Biomechanics at Edith Cowan University, Australia.

Previous research has shown that children do not tire as quickly as untrained adults during physical tasks. Ratel and Blazevich suggested the energy profiles of children could be comparable to endurance athletes, but there was no evidence to prove this until now.

The researchers asked three different groups — 8-12 year-old boys and adults of two different fitness levels — to perform cycling tasks. The boys and untrained adults were not participants in regular vigorous physical activity. In contrast the last group, the endurance athletes, were national-level competitors at triathlons or long-distance running and cycling.

Each group was assessed for the body’s two different ways of producing energy. The first, aerobic, uses oxygen from the blood. The second, anaerobic, doesn’t use oxygen and produces acidosis and lactate (often known by the incorrect term, lactic acid), which may cause muscle fatigue. The participants’ heart-rate, oxygen levels and lactate-removal rates were checked after the cycling tasks to see how quickly they recovered.

In all tests, the children outperformed the untrained adults.

“We found the children used more of their aerobic metabolism and were therefore less tired during the high-intensity physical activities,” says Ratel. “They also recovered very quickly — even faster than the well-trained adult endurance athletes — as demonstrated by their faster heart-rate recovery and ability to remove blood lactate.”

“This may explain why children seem to have the ability to play and play and play, long after adults have become tired.”

Ratel and Blazevich explain the significance of their findings. “Many parents ask about the best way to develop their child’s athletic potential. Our study shows that muscle endurance is often very good in children, so it might be better to focus on other areas of fitness such as their sports technique, sprint speed or muscle strength. This may help to optimize physical training in children, so that they perform better and enjoy sports more.”

Ratel continues, “With the rise in diseases related to physical inactivity, it is helpful to understand the physiological changes with growth that might contribute to the risk of disease. Our research indicates that aerobic fitness, at least at the muscle level, decreases significantly as children move into adulthood — which is around the time increases in diseases such as diabetes occur.

“It will be interesting in future research to determine whether the muscular changes we have observed are directly related to disease risk. At least, our results might provide motivation for practitioners to maintain muscle fitness as children grow up; it seems that being a child might be healthy for us.”

Abstract of the study:

The aim of this study was to determine whether prepubertal children are metabolically comparable to well-trained adult endurance athletes and if this translates into similar fatigue rates during high-intensity exercise in both populations. On two different occasions, 12 prepubertal boys (10.5 ± 1.1 y), 12 untrained men (21.2 ± 1.5 y), and 13 endurance male athletes (21.5 ± 2.7 y) completed an incremental test to determine the power output at VO2max (PVO2max) and a Wingate test to evaluate the maximal anaerobic power (Pmax) and relative decrement in power output (i.e., the fatigue index, FI). Furthermore, oxygen uptake (VO2), heart rate (HR), and capillary blood lactate concentration ([La]) were measured to determine (i) the net aerobic contribution at 5-s intervals during the Wingate test, and (ii) the post-exercise recovery kinetics of VO2, HR, and [La]. The Pmax-to-PVO2max ratio was not significantly different between children (1.9 ± 0.5) and endurance athletes (2.1 ± 0.2) but lower than untrained men (3.2 ± 0.3, p < 0.001 for both). The relative energy contribution derived from oxidative metabolism was also similar in children and endurance athletes but greater than untrained men over the second half of the Wingate test (p < 0.001 for both). Furthermore, the post-exercise recovery kinetics of VO2, HR, and [La] in children and endurance athletes were faster than those of untrained men. Finally, FI was comparable between children and endurance athletes (−35.2 ± 9.6 vs. −41.8 ± 9.4%, respectively) but lower than untrained men (−51.8 ± 4.1%, p < 0.01). To conclude, prepubertal children were observed to be metabolically comparable to well-trained adult endurance athletes, and were thus less fatigable during high-intensity exercise than untrained adults.

1 Comment

Filed under At home, Research

One response to “How come young children seem to run around all day without getting tired? They are athletes!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s