Nothing really new, but worth repeating: multimodal learning works

There is a new review study on multimodal learning by Brian Mathias and Katharina von Kriegstein.

The good:

  • This is a review study that was conducted by looking at different disciplines.
  • It establishes something we’ve known for quite a while: Numerous current scientific studies prove that multimodal enrichment can enhance learning outcomes. Experiments in classrooms show similar results.
  • There are some new insights from neuroscience:
    • Neuroscience research shows that sensory and motor areas in the brain respond crossmodally to enriched items following learning. These brain responses occur during early stages of perceptual processing.
    • Recent neurostimulation studies reveal that crossmodal brain responses contribute causally to the behavioral benefits of enrichment. These findings support multimodal theories of enrichment and update and constrain cognitive and computational theories.

The bad:

  • We’ve known a lot of this already from outside neuroscientific research.

But wait, is this a bad thing? Not really. You could regard this as some kind of triangulation. And you’ll always get some more nuances along the way.

From the press release:

Many educational approaches assume that integrating complementary sensory and motor information into the learning experience can enhance learning, for example gestures help in learning new vocabulary in foreign language classes. In her recent publication, neuroscientist Katharina von Kriegstein from Technische Universit√§t Dresden and Brian Mathias of the University of Aberdeen summarize these methods under the term “multimodal enrichment.” This means enrichment with multiple senses and movement. Numerous current scientific studies prove that multimodal enrichment can enhance learning outcomes. Experiments in classrooms show similar results.

In the review article, the two researchers compare these findings with cognitive, neuroscience, and computational theories of multimodal enrichment. Recent neuroscience research has found that the positive effects of enriched learning are associated with response in brain regions that serve perception and motor function. For example, hearing a recently learned foreign language word, may elicit activity in motor brain regions if the word was associated with the performance of a congruent gesture during learning. These brain responses are causal to the benefits of multimodal enrichment for learning outcome. Computer algorithms confirm this hypothesis.

“The brain is optimized for learning with all the senses and with movement. Brain structures for perception and motor skills work together to promote this type of learning. We hope that our deeper understanding of the brain’s learning mechanisms, will facilitate the development of optimal learning strategies in the future,” explains Brian Mathias.

Katharina von Kriegstein adds, “The results of the literature we reviewed contribute to our understanding of why several long-used learning strategies, such as parts of the Montessori method, are effective. They also provide clear clues as to why some approaches are not as effective. Recently uncovered neuroscientific mechanisms may inspire the updating of cognitive and computational theories of learning, providing new hypotheses about learning. We anticipate that such an interdisciplinary and evidence-based approach will lead to the optimization of learning and teaching strategies in the future, for both humans and artificial systems.”

Abstract of the review study:

The presence of complementary information across multiple sensory or motor modalities during learning, referred to as multimodal enrichment, can markedly benefit learning outcomes. Why is this? Here, we integrate cognitive, neuroscientific, and computational approaches to understanding the effectiveness of enrichment and discuss recent neuroscience findings indicating that crossmodal responses in sensory and motor brain regions causally contribute to the behavioral benefits of enrichment. The findings provide novel evidence for multimodal theories of enriched learning, challenge assumptions of longstanding cognitive theories, and provide counterevidence to unimodal neurobiologically inspired theories. Enriched educational methods are likely effective not only because they may engage greater levels of attention or deeper levels of processing, but also because multimodal interactions in the brain can enhance learning and memory.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.